Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model

نویسندگان

  • Ally M. Toure
  • R. H. Reichle
  • Barton A. Forman
  • Augusto Getirana
  • Gabrielle J. M. De Lannoy
چکیده

The NASA Catchment land surface model (CLSM) is the land model component used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Here, the CLSM versions of MERRA and MERRA-Land are evaluated using snow cover fraction (SCF) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Moreover, a computationally-efficient empirical scheme is designed to improve CLSM estimates of SCF, snow depth, and snow water equivalent (SWE) through the assimilation of MODIS SCF observations. Results show that data assimilation (DA) improved SCF estimates compared to the open-loop model without assimilation (OL), especially in areas with ephemeral snow cover and mountainous regions. A comparison of the SCF estimates from DA against snow cover estimates from the NOAA Interactive Multisensor Snow and Ice Mapping System showed an improvement in the probability of detection of up to 28% and a reduction in false alarms by up to 6% (relative to OL). A comparison of the model snow depth estimates against Canadian Meteorological Centre analyses showed that DA successfully improved the model seasonal bias from −0.017 m for OL to −0.007 m for DA, although there was no significant change in root-mean-square differences (RMSD) (0.095 m for OL, 0.093 m for DA). The time-average of the spatial correlation coefficient also improved from 0.61 for OL to 0.63 for DA. A comparison against in situ SWE measurements also showed improvements from assimilation. The correlation increased from 0.44 for OL to 0.49 for DA, the bias improved from −0.111 m for OL to −0.100 m for DA, and the RMSD decreased from 0.186 m for OL to 0.180 m for DA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A methodology for snow data assimilation in a land surface model

[1] Snow cover has a large influence on heat fluxes between the land and atmosphere because of its high albedo and insulating thermal properties. Hence accurate snow representation in coupled land-ocean-atmosphere global climate models has the potential to greatly increase prediction accuracy. To this end, a one-dimensional extended Kalman filter analysis scheme has been developed to assimilate...

متن کامل

Assimilation ofMODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4

To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilatio...

متن کامل

Multisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information

[1] This investigation establishes a multisensor snow data assimilation system over North America (from January 2002 to June 2007), toward the goal of better estimation of snowpack (in particular, snow water equivalent and snow depth) via incorporating both Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) and Moderate Resolution Imaging Spectroradiometer (MODIS) s...

متن کامل

Disaggregation of SMAP radiometric soil moisture measurements at catchment scale using MODIS land surface temperature data

Satellite soil moisture observations often require the enhancement of spatial resolution prior to being used in climatic and hydrological studies. This study employs the thermal inertia theory to downscale the 36 km radiometric data of the NASA’s Soil Moisture Active/Passive Mission (SMAP) into 1 km resolution. Regressions between daily temperature difference and daily mean soil moisture were e...

متن کامل

Assimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential

We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA’s Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018